

CURSO 2012-2013

DESCRIPCIÓN DE LA ASIGNATURA

ASIGNATURA:	TEORÍA DE MÁQUINAS Y MECANISMOS
Nombre en Inglés:	THEORY OF MACHINES AND MECHANICS
Código UPM:	565000152
MATERIA:	TEORÍA DE MÁQUINAS Y MECANISMOS
CRÉDITOS ECTS:	4,5
CARÁCTER:	COMÚN A LA RAMA INDUSTRIAL
TITULACIÓN:	GRADUADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA
TIPO:	OBLIGATORIA
CURSO:	TERCERO
SEMESTRE:	QUINTO

CURSO ACADÉMICO	2012-2013			
PERIODO IMPARTICION	Septiembre- Enero F		ebrero - Junio	
IDIOMA IMPARTICIÓN	Sólo castellano ⊠	Sólo inglés	Ambos	

DEPARTAMENTO					
INGENERÍA MECÁNICA Y CONSTRUCCIÓN (EUITI)					
COORDINADOR					
JUAN MANUI	EL RODRÍGUEZ I	NUEVO			
PROFESORADO					
NOMBRE Y APELLIDO DESPACHO Correo electrónico					
MIGUEL BERZAL RUBIO	A-424	m.berzal@upm.es			
MANUEL FERNÁNDEZ BENÍTEZ A-424 manuel.fernandez@upm.es					
JUAN MANUEL RODRÍGUEZ NUEVO A-424 juanmanuel.rodriguez@upm.es					

CONOCIMIENTOS PREVIOS REQUERIDOS PARA PODER SEGUIR CON NORMALIDAD LA ASIGNATURA				
ASI GNATURAS SUPERADAS				
OTROS RESULTADOS DE APRENDIZAJE NECESARIOS				

CURSO 2012-2013

OBJETIVOS DE APRENDIZAJE

	COMPETENCIAS Y NIVEL ASIGNADAS A LA ASIGNATURA						
Código	COMPETENCIA	NIVEL					
CE 13	Conocimiento de los principios de teoría de máquinas y mecanismos.	Conocimiento					

Código	RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA
RA-01	Conocimiento y clasificación de los mecanismos básicos y de las partes que lo constituyen.
RA-02	Conocimiento de los conceptos y teoremas fundamentales en la teoría de máquinas y mecanismos.
RA-03	Capacidad para la determinación de posiciones, velocidades, aceleraciones y fuerzas en mecanismos mediante métodos gráficos.
RA-04	Capacidad para la determinación de posiciones, velocidades, aceleraciones y fuerzas en mecanismos mediante métodos analíticos.
RA-05	Manejo de un software de análisis y simulación de mecanismos.
RA-06	Capacidad para entender e interpretar los resultados obtenidos en un análisis cinemático y dinámico de un mecanismo

CURSO 2012-2013

CONTENIDOS Y ACTIVIDADES DE APRENDIZAJE

	CONTENIDOS ESPECÍFICOS (TEMARIO	0)
TEMA / CAPÍTULO	APARTADO	Indicadores de logro relacionados
	1.1. Cinemática de las máquinas.	
	1.2. Definiciones y conceptos básicos.	
Tema 1:	1.3. Clasificación de las barras.	
Consideraciones	1.4. Clasificación de los pares.	LO-01, LO-02 y LO-03
generales	1.5. Inversión cinemática.	
	1.6. Movilidad de una cadena cinemática.	
	1.7. Leyes de Grashof.	
	2.1. Conceptos generales.	
	2.2. Análisis de posiciones por el método	
Tema 2: Análisis	gráfico.	
de posiciones y	2.3. Análisis de posiciones por el método	LO-04 y LO-05
desplazamientos	analítico.	
	2.4. Análisis de posiciones con un software	
	específico.	
	3.1. Ecuación de la diferencia de velocidad	
	entre dos puntos de un mismo sólido rígido	
	o ecuación de las velocidades relativas.	
	3.2. Ecuación de la diferencia de velocidad	
	entre dos puntos coincidentes de dos	
	sólidos rígidos diferentes o ecuación de las	
	velocidades en el movimiento aparente. 3.3. Determinación de velocidades	
	utilizando métodos gráficos.	
Tema 3: Análisis	3.4. Determinación de velocidades por el	
de velocidades	método analítico.	LO-04 y LO-06
ac velocidades	3.5. Ventaja mecánica.	
	3.6. Centro instantáneo de rotación.	
	3.7. Teorema de los tres centros.	
	3.8. Número de CIR de una cadena	
	cinemática y su localización.	
	3.9. Obtención de las velocidades por el	
	método de los CIR.	
	3.10. Análisis de velocidades con un	
	software específico.	
Tema 4: análisis	4.1. Aceleraciones. Consideraciones	10.04 v 10.07
de aceleraciones	generales.	LO-04 y LO-07
	4.2. Ecuación de la diferencia de	
	aceleración entre dos puntos de un mismo	
	sólido rígido o ecuación de las aceleraciones	
	relativas.	
	4.3. Ecuación de la diferencia de	

aceleración entre dos puntos coincidentes

	de dos sólidos rígidos diferentes o ecuación		
	de las aceleraciones en el movimiento		
	aparente.		
	4.4. Determinación de aceleraciones		
	utilizando métodos gráficos.		
	4.5. Determinación de aceleraciones		
	utilizando métodos analíticos.		
	4.6. Análisis de aceleraciones con un		
	software específico.		
	5.1. Determinación de fuerzas y pares por		
Tema 5: Fuerzas	el método gráfico.		
	5.2. Determinación de fuerzas y pares por		
y momentos estáticos en	el método analítico.	LO-04 y LO-08	
mecanismos	5.3. Fuerza reducida a un punto.		
Illecallisiilos	5.4. Análisis de fuerzas estáticas con un		
	software específico.		
	6.1. Fuerzas y momentos de inercia en el		
	movimiento plano.		
	6.2. Principio de D´Alembert.		
	6.3. Fuerza de inercia en una barra		
	sometida exclusivamente a un movimiento		
Tema 6: Fuerzas	de rotación.		
y momentos de	6.4. Fuerza de inercia en una barra		
inercia en	sometida a un movimiento combinado de	LO-04 y LO-09	
mecanismos	rotación más traslación.		
mecamismos	6.5. Determinación de fuerzas y momentos		
	de inercia por el método gráfico.		
	6.6. Determinación de fuerzas y momentos		
	de inercia por el método analítico.		
	5.4. Análisis de fuerzas de inercia con un		
	software específico.		

BREVE DESCRIPCIÓN DE LAS MODALIDADES ORGANIZATIVAS UTILIZADAS Y METODOS DE ENSEÑANZA EMPLEADOS					
CLASES DE TEORIA	Clases expositivas de transmisión de conocimientos. Se promoverá la búsqueda de la interrelación existente entre los distintos conocimientos revelados de la asignatura, y entre éstos y otros conocimientos de asignaturas afines.				
CLASES PROBLEMAS	Clases presenciales destinadas a la realización de ejercicios y problemas que contribuyan a reforzar las comprensión de los conceptos desarrollados en las clases teóricas y que sirven de base en las aplicaciones prácticas de la asignatura.				
PRÁCTICAS	Mediante un programa informático específico de análisis y simulación de mecanismos se resolverán problemas prácticos.				
TRABAJOS INDIVIDUALES	A cada alumno se le propondrá la realización de distintos ejercicios y problemas numéricos donde aplicarán los principales conocimientos teóricos desarrollados a lo largo del curso.				
TRABAJOS EN GRUPO	No están previstos.				
TUTORÍAS	Atención personalizada del estudiante con el objeto de orientar y reforzar su proceso de aprendizaje.				

	RECURSOS DIDÁCTICOS
	Calero y Carta. Fundamentos de mecanismos y máquinas para ingenieros. Ed. McGraw-Hill.
	Fernández Benítez, Rodríguez Nuevo y Vera Martínez. Apuntes de Teoría de Máquinas y Mecanismos. Servicio de Publicaciones de la EUITI.
	García, Castejón y Rubio. Problemas resueltos de teoría de máquinas y mecanismos. Ed. Thomson.
BIBLIOGRAFÍA	Hernández. Cinemática de mecanismos. Ed. Síntesis.
	Norton. Diseño de maquinaria. Ed. McGraw-Hill.
	Shigley y Uicker. Teoría de máquinas y mecanismos. Ed. McGraw-Hill.
	Simón, Bataller y otros autores. Fundamentos de teoría de máquinas. Ed. Bellisco.
RECURSOS WEB	www.artas.nl
RECORSOS WEB	www.dmg-lib.org
EOUIPAMIENTO	Programa informático de análisis, síntesis y simulación de mecanismos SAM.
LEGIT AWILINTO	Aula de docencia informática (ADI).

CURSO 2012-2013

CRONOGRAMA DE TRABAJO DE LA ASIGNATURA

MES	QUINCENA	ACTIVIDADES AULA	LABORATORIO	TRABAJO INDIVIDUAL	TRABAJO EN GRUPO	ACTIVIDADES EVALUACIÓN	OTROS
	1 ^a	Tema 1 y Tema 2					
Sept.		(T y P)					
Обри.	2ª	Inicio Tema 3					
		(T y P)					
	1ª	Fin Tema 3		Trabajo 1		Evaluación continua	
Oct.		(T y P)		павајо т		trabajo 1	
OCt.	2ª	Inicio Tema 4	Práctica 1			Evaluación continua	
		(T y P)	(2 h)			práctica 1	
	1 ^a	Fin Tema 4		Trabajo 2		Evaluación continua	
Nov.		(T y P)		Trabajo 2		trabajo 2	
l wov.	2ª	Inicio tema 5	Práctica 2			Evaluación continua	
		(T y P)	(2 h)			práctica 2	
	1 ^a	Fin tema 5 e inicio	Práctica 3			Evaluación continua	
Dic.		tema 6 (T y P)	(2 h)	Trabajo 3		práctica 3 y trabajo 3	
		(1 y F)					

MES	QUINCENA	ACTIVIDADES AULA	LABORATORIO	TRABAJO INDIVIDUAL	TRABAJO EN GRUPO	ACTIVIDADES EVALUACIÓN	OTROS
	2ª	Continuación tema 6					
		(T y P)					
Ene.	1ª	Fin tema 6 (T y P)		Trabajo 4		Evaluación continua trabajo 4	
Life.	2ª					Examen final	

CURSO 2012-2013

SISTEMA DE EVALUACIÓN DE LA ASIGNATURA

EVALUACIÓN				
Ref	INDICADOR DE LOGRO	Relacionado con RA:		
LO-01	El alumno debe ser capaz de definir mecanismo y máquina.	RA-01		
LO-02	El alumno debe ser capaz de enumerar, definir y clasificar las partes que conforman un mecanismo.	RA-01		
LO-03	El alumno debe ser capaz de identificar en una máquina los principales mecanismos básicos y justificar sus aplicaciones.	RA-01		
LO-04	El alumno debe ser capaz de conocer y aplicar los conceptos, ecuaciones y teoremas utilizados en el análisis cinemático y dinámico de mecanismos	RA-02 a RA-06		
LO-05	El alumno debe ser capaz de determinar posiciones y trayectorias por métodos gráficos, por métodos analíticos y por aplicación de un software específico.	RA-02 a RA-06		
LO-06	El alumno debe ser capaz de determinar velocidades por métodos gráficos, por métodos analíticos y por aplicación de un software específico.	RA-02 a RA-06		
LO-07	El alumno debe ser capaz de determinar aceleraciones por métodos gráficos, por métodos analíticos y por aplicación de un software específico.	RA-02 a RA-06		
LO-08	El alumno debe ser capaz de determinar fuerzas y pares estáticos por métodos gráficos, por métodos analíticos y por aplicación de un software específico.	RA-02 a RA-06		
LO-09	El alumno debe ser capaz de determinar fuerzas y momentos de inercia por métodos gráficos, por métodos analíticos y por aplicación de un software específico.	RA-02 a RA-06		

CURSO 2012-2013

EVALUACIÓN SUMATIVA (ACUMULATIVA)					
BREVE DESCRIPCIÓN DE LAS ACTIVIDADES EVALUABLES	MOMENTO	LUGAR	PESO EN LA CALIFICACIÓN		
Resolución de trabajos individuales	Se informará a lo largo del curso	Aula	30 %		
Prácticas de Laboratorio	Se informará a lo largo del curso	Aula de Docencia Informática (ADI)	10 %		
Examen Final	Fecha oficial	Aula oficial	60 %		
TOTAL			100 %		

CRITERIOS DE CALIFICACIÓN

Cada prueba puntúa de 0 a 10 puntos. La calificación global se obtiene por media ponderada de acuerdo con los porcentajes indicados para cada una de las actividades evaluables. Para obtener la calificación global de la asignatura, deben estar aprobadas cada una de las actividades evaluables con una puntuación igual o superior a 5 puntos.

Las calificaciones obtenidas por evaluación continua solamente se guardarán hasta la realización del Examen Final Ordinario correspondiente al cuatrimestre de docencia de la asignatura.

En caso de que el alumno suspenda la asignatura en la convocatoria ordinaria, o renuncie a la Evaluación Continua, para las convocatorias extraordinarias el peso en la calificación de las actividades evaluables será el siguiente:

Prácticas de Laboratorio	10 %
Examen Final	90 %
TOTAL	100 %

Es obligatorio realizar y aprobar las prácticas de laboratorio para aprobar la asignatura. La calificación de las prácticas de laboratorio se guardarán como máximo, durante un año posterior a la realización de las mismas.